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Abstract

In this document we describe the technical aspects of the pendu-
lum tester. The central premise being that we wish to measure the
flexibility of a club head in a repeatable, robust and reliable manner.
We will describe the technical set up of the device and the rationale
behind any modeling assumptions. We also give details of the data
analysis, which is necessary to process the signals from the electronics.

1 Introduction

The objective of the pendulum test (shown in figure 1) is to give a more
direct measurement of the flexibility of a club head than the current test for
spring-like effect provides. It has been found that this test yields additional
benefits over the current test in terms of portability, cost, time to perform as
well as repeatability and resolution. The test generally consists of striking
a steel mass with a spherical face (equipped with an accelerometer), against
a club head and repeating this at several different impact velocities. It has
been found that this procedure provides a measure of the flexibility of the
club at high impact velocities.

The following document contains details of the model by which we de-
termine the functional dependence of the velocity varying constituent of the
characteristic time and a description of a model for the club/mass impact.
The technical description of the test protocol and the details of the data
analysis are given. Subsequently we give the analysis which is used within
the code to determine a club’s conformance.

2 A dynamic model for the pendulum test

In order to understand the dynamic properties of a club head it is essential
that a realistic model is exploited, however it is also crucial that the model
is not overly complicated. It is realised that it is insufficient to utilize a
simple Hooke’s law spring, and that the material and geometric effects can
be incorporated via the use of a Hertzian spring.

The design of the test is based on the concept that we wish to use low
velocity impacts to predict how the club will perform at higher velocities.
To this end we divide the characteristic time into two constituents, being
the velocity independent and dependent parts. Hence the characteristic time
tchar is given by

tchar = t̄char + V
− 1

5
I A.
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Figure 1: Photo of the test set up.
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Figure 2: A schematic for the collinear impact of two spheres.

In this expression t̄char is the characteristic time which reflects the flexibility
of the club at high velocities (and it is this which will be used to judge
conformance), while the latter part is the velocity dependent constituent.
The functional dependence on the velocity of the test, VI and an expression
for the constant A are derived in the next section.

2.1 Hertzian contact - collinear impact of two spheres

We describe the collinear impact of spheres as presented in Johnson (1985)1.
The spheres are taken to have radius of curvature Rj, Young’s modulus Ej,
mass mj and Poisson’s ratio of νj (for j = 1 and j = 2). In figure 2 we
show the coordinate system, with the centers of the spheres at x1 and x2.
We now consider the governing equations for the centers of the spheres. The
force between the spheres while they are in contact is taken to be P and thus
we have

ẍ1 = − 1

m1

P and ẍ2 =
1

m2

P.

We note that the compression between the spheres is δ = x1− x2 (where the
origins of these systems are at the respective centers of the spheres). Drawing

on Johnson we note that the force P due to compression is P = Kδ
3
2 , where

1K. L. Johnson ‘Contact Mechanics’ Cambridge University Press, 1985
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K = 4
3
R1/2E∗ with

R =
1

1
R1

+ 1
R2

and E∗ =
1

1−ν2
1

E1
+

1−ν2
2

E2

.

In these expressions R is an effective radius of curvature and similarly E∗ is
the effective Young’s modulus. We seek to solve the system subject to the
initial conditions that x1 = x2 = ẋ2 = 0 and ẋ1 = VI .

By subtracting the above equations for ẍ1 and ẍ2 we find that

d2

dt2
(x1 − x2) = −m1 + m2

m1m2

P

or written in terms of δ

δ̈ = −m1 + m2

m1m2

Kδ
3
2 . (1)

This can be integrated immediately with respect to time (by multiplying
through by δ̇) to obtain

1

2
δ̇2 +

m1 + m2

m1m2

2

5
Kδ

5
2 =

1

2
V 2

I . (2)

In the above expression we have utilized the fact that δ = x1 − x2 and
consequently δ̇ = ẋ1− ẋ2, so that at t = 0 δ̇ = VI . Returning to the equation
for ẍ1, eliminating P and noting that δ3/2 can be written in terms of δ̈ we
find that

ẍ1 =
m2

m1 + m2

δ̈

which can be integrated with respect to time to yield

ẋ1 =
m2

m1 + m2

δ̇ + C.

Applying the initial conditions we find that

ẋ1 =
1

m1 + m2

(
m2δ̇ + m1VI

)
. (3)

The value of the velocity at the end of the collision (VF ) occurs when δ
returns to zero (and there is no compression). This corresponds to δ̇ = −VI

(from equation (2)) and thus at this time

VF =
m1 −m2

m1 + m2

VI .
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We are interested in the difference between the incoming and outgoing veloc-
ity, namely V = VF−VI . We now consider the generic problem in determining
the value of δ at which ẋ1 = VI + λV (λ = 0 gives the initial velocity and
λ = 1 the final velocity). In our example λ = 0.05 and λ = 0.95. A trivial
rearrangement of the equation (3) gives the corresponding value of δ̇ as

δ̇λ =
(m1 + m2)(VI + λV )−m1VI

m2

= (1− 2λ)VI .

We can now substitute this expression into (2) to obtain the corresponding
value of δ, namely

δλ =

{
5m1m2

4K(m1 + m2)
4λ(1− λ)

} 2
5

V
4
5

I .

We can now rearrange the equation (2) and integrate to show that the
characteristic time is given by

t̃char =

δ0.95∫

δ0.05

dδ√
V 2

I − m1+m2

m1m2

4
5
Kδ

5
2

=

δ0.5∫

δ0.05

dδ√
V 2

I − m1+m2

m1m2

4
5
Kδ

5
2

+

δ0.95∫

δ0.5

dδ√
V 2

I − m1+m2

m1m2

4
5
Kδ

5
2

= 2

δ0.5∫

δ0.05

dδ√
V 2

I − m1+m2

m1m2

4
5
Kδ

5
2

,

where we have exploited the fact that δλ is symmetric about λ = 1/2. We
now adopt a simple change of variables, so that

δ =

(
5m1m2

4K(m1 + m2)

) 2
5

V
4
5

I x.

We note that the corresponding values of xλ are given by simply (4λ(1 −
λ))2/5. Hence the characteristic time is

t̃char =
2

V
1
5

I

{
5m1m2

4K(m1 + m2)

} 2
5

1∫

(4×0.95×0.05)2/5

dx√
1− x

5
2

.

We note the functional dependence on the impact velocity. We also note
that there is a dependence on mass. However, within any given scenario
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Figure 3: A schematic of the dynamic model of the club-mass interaction
with a Hertzian contact.

the effective masses of the spheres are determined (that is by the mass of
the club and the mass of the pendulum). Since we are proposing to use
t̄char to determine the conformance and the value of the constant A will be
determined experimentally the presence of the mass in this expression is not
a concern.

We note that when considering total time of impact (from λ = 0 to λ = 1)
we find an analytical result in terms of the Beta function, however we exploit
the 5% to 95% range to improve the repeatability of the evaluation. We
should also mention that the model discussed in this section is pertinent to
two spheres one of which impacts the other and they both are unconstrained.
In the pendulum device the velocity we will measure is actually the difference
between VI and VF , since we are in a frame moving with the pendulum’s mass
(specifically the accelerometer).

2.2 Model of the club/ball impact

We now proceed to discuss the model for the interaction of the club and the
pendulum’s mass. This draws on the previous section, using the Hertzian
contact between the mass and the club. The basic model is depicted in
figure 3. We define the coordinates xb, xf and xc being representative of the
mass, face and club respectively (with their origins as shown in the figure 3).
We define the spring constant associated with the Hertzian spring kH as
P/(xb − xf ). Again following Johnson (1985) equation (4.23), we note that

(xb − xf )
3 =

9P 2

16R(E∗)2
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where

R =
1

1
Rb

+ 1
Rc

and E∗ =
1

1−ν2
b

Eb
+ 1−ν2

c

Ec

.

Again R is an effective radius of curvature and similarly E∗ is the effective
Young’s modulus. In these expressions Rb, νb and Eb are the radius of cur-
vature, Poisson ratio and Young’s modulus respectively for the mass (and
similarly for the club with Rc, νc and Ec). Eliminating P from the above
expressions we find that

kH =
4

3
R

1
2 E∗(xb − xf )

1
2 .

We now give the governing equations for the system

mbẍb =

{
kH(xf − xb) xb > xf

0 xb < xf ,

mcẍc = kc(xf − xc);

recalling that each coordinate has a separate origin. Using a balance of
forces at the point xf we note that kH(xb − xf ) = kc(xf − xc). This can be
manipulated to yield

xf =
kHxb + kcxc

kc + kH

.

This expression can now be substituted into the above equations to give

mbẍb = kH

[
kHxb + kcxc

kc + kH

− xb

]
if xb > xf ,

mcẍc = kc

[
kHxb + kcxc

kc + kH

− xc

]
,

where the expression for xf also needs to be substituted into kH . These
equations can be solved effectively using a Runge-Kutta scheme to produce
results whereby the model may be evaluated. In figure 4 we show three
representative cases demonstrating the effect of changing the parameter kc.
This is useful for examining the role of various parameters and shows the
way in which the Hertzian and Hookean springs interact.

We now proceed to discuss the manner in which we acquire the data.

3 The test protocol

Central to the test is the determination of a characteristic time which corre-
lates with the current COR results for the clubs. Through an extensive set
of tests it has been found that the most robust and repeatable measure is to:
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Figure 4: Plot of velocities showing characteristic times for three values of
kc (note that the higher the value of kc the less flexible the club).
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Filter the data from the scope and then integrate it to obtain the
velocity of the accelerometer. The time taken for the velocity to
rise from 5% to 95% of its maximum value is calculated. This test
is repeated nine times (three times at three different settings on
the pendulum). The acquired data is extrapolated to determine
the effective characteristic time at large velocities.

We shall now describe the methods used for the data analysis. Further, we
give details of how conformance is determined.

4 Data analysis

The mechanical device produces a signal (ti,Si) which spans 500µs. The
indices of the points run from i = 1 to i = N . The symbol S is used for the
voltage returning from the scope, which is representative of the acceleration.
The recommended scope is a 12 bit device sampling at 50MHz (ADC212
www.picotech.com). At this point in this section we shall consider that the
data has been extracted correctly, although we shall revisit the fidelity of the
signal in due course. For the sampling rate of the scope we are using this
gives N = 3119, with a corresponding time step of 0.16µs. An example of a
signal from the scope is shown in figure 5. The accelerometer we are using
has an intrinsic noise associated with oscillations of the crystal at 65-75KHz.
In order to remove this and any other noise the Fourier spectrum of the data
is calculated. Using the period of 500µs we have L = 250µs and the Fourier
coefficients are

a0 =
2

L

L∫

−L

S(t) dt

an =
1

L

L∫

−L

S(t) cos
nπ(t− L)

L
dt,

bn =
1

L

L∫

−L

S(t) sin
nπ(t− L)

L
dt.

Hence the reconstructed signal will take the form

SNm(t) = a0 +
Nm∑
i=1

an cos
nπ(t− L)

L
+ bn sin

nπ(t− L)

L
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Figure 5: A typical example of the voltage output from the scope. This signal
has 3119 points and the resolution is determined by the fact that the scope
returns a 12 bit signal. We also include the corresponding filtered signal.
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Figure 6: Fourier spectrum for a typical signal shown for the first 35 modes.
Here we see some evidence of the noise (for n ∼ 34).

where in the limit Nm → ∞ we will recover the original signal. However,
using a finite value of Nm we are able to remove the noise. It has been found
suitable to use a value of 15. Extensive testing has been performed to verify
that only small changes in the eventual answer are observed with variation in
this number. In order to determine the Fourier coefficients it has been found
to be sufficient to use a simple Trapezium method of numerical integration.
The Fourier spectrum associated with the typical signal shown in figure 5 is
shown in figure 6. We note that the acceleration is close to zero at both ends
of the signal and consequently we do not encounter Gibb’s phenomenon.

We wish to construct the velocity and this is done by integrating the
signal S(t) from 0 to t, such that the initial velocity is zero. Hence we have

vNm(t) = a0t+
Nm∑
i=1

anL

nπ
sin

nπ(t− L)

L
− bnL

nπ

(
cos

nπ(t− L)

L
− (−1)n

)
, (4)

where the term (−1)n comes from cos nπ. We are now in a position to
manipulate this signal. Unsurprisingly, the resulting velocity is independent
of whether the filtered signal is reconstructed and then integrated, or if it is
constructed directly from equation (4). In figure 7 we show a representative
velocity plot (which again corresponds to the acceleration signal shown in
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Figure 7: Sample velocity profile for an impact between a club and a ball,
the units on the ordinate are ms−1. Also shown are the times associated
with the 5% and 95% points on the curve and a pictorial representation of
the characteristic time.

figure 5).
In order to calculate a characteristic time for the club we determine the

maximum velocity (simply by looking for the largest value of vN(t)). We
shall refer to this quantity as V (which gives a velocity representative of the
impact). We then calculate the time for the velocity to rise from 5% of V
to 95% of V . We exploit simple linear interpolation for this process with the
filtered signal. This yields a value of tchar.

It is important that we predict how the characteristic time varies with
V and as such the test is repeated for different values. This is achieved by
dropping the pendulum from different heights. We shall now discuss how
these points (V, tchar) are used to determine the conformance of a club.
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5 Test procedure

The above procedure is repeated nine times to get the points (V (i), tchar
(i))

for i = 1 to i = 9. The test is based on the experiment being repeated
three times at three different velocities. The test uses explicitly the change
in velocity not the impact velocity that one might calculate from a potential
energy calculation or direct measurement of the pre-impact velocity. We now
exploit the model so that we shall determine a least squares fit of the data,
such that

tchar = α̂ + β̂V − 1
5 .

where

β̂ =

∑Ns

i=1(Xi − X̄)(Yi − Ȳ )∑Ns

i=1(Xi − X̄)
and α̂ = Ȳ − β̂X̄ = t̄char.

In the above expressions we have used X = V − 1
5 and Y = tchar. The standard

error se is defined as

se =

√∑Ns

i=1(Yi − Ŷi)2

Ns − 2
,

where Ŷi = α̂ + β̂Xi. We note that the Ns − 2 factor in the denominator is
due to the fact that we have already estimated two parameters from the set
of Ns points. The coefficient of variation of the data r2 is given by

r2 =
σ2

y − s2
e

σ2
y

(5)

where σy is the sample standard deviation of Y (and in due course we will
exploit the sample standard deviation of X, namely σx). These are defined
as

σ2
x =

1

Ns − 1

Ns∑
i=1

(X − X̄)2 and σ2
y =

1

Ns − 1

Ns∑
i=1

(Y − Ȳ )2;

the factor of Ns − 1 is used to produce an unbiased estimate of the variance
(since we are already estimating the mean). We have shown that the current
COR test correlates with the characteristic time associated with very large
V . Since it is impractical to test at these velocities we use extrapolation from
the above tests. We realise that this can be prone to errors and hence it is
crucial that large values of r2 are obtained. We also exploit further analysis
to identify confidence intervals.
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Samples, Ns DF tc (at 99%)
9 7 3.449
18 16 2.921

Table 1: Table of Student’s t statistics at the 99% level.

5.1 Confidence intervals

We now seek to understand the likely variability in the extrapolated charac-
teristic time and to this end we shall develop confidence intervals, which we
define as:

Confidence interval The extent to which points on the regression line
should vary for any of the inputs V −1/5.

The extrema of the confidence interval are

Ŷ ± setc

√
1

Ns

+
(X − X̄)2

σ2
x

.

In these intervals tc is the Student’s t critical statistic with Ns − 2 degrees
of freedom. The values used in the test are shown in Table 1. We also
plan to incorporate measures into the software which will highlight any ex-
traneous measurements, namely standardised residuals, leverages and their
combination into Cook’s distances.

6 Technical details of the protocol

A club will be tested in the prescribed manner (that is center hits) three times
at each of the three velocities (corresponding to settings on the pendulum).
These nine data points will be used to determine the line of best fit (in the
manner described above). The 99% confidence interval will also be calculated
for y = 0 (which corresponds to a large velocity impact).

If the confidence interval lies completely below the prescribed limit, then
the club will be deemed to conform.

If the confidence interval lies completely above the prescribed limit, then
the club will be deemed not to conform.

If the confidence interval includes the prescribed limit then a further nine
hits (three at each velocity) will be taken and the extrapolated value
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Figure 8: Variation of the characteristic time tchar with impact velocity V .

will be recalculated and this will be used to determine whether the club
conforms or not.
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